
2025/08/11 15:57 1/11 Label Templates

COBISOFT Documentation - https://docs.cobisoft.de/wiki/

Label Templates

Label templates for COBI.wms are HTML files which may contain special placeholder values
interpreted by COBI.wms. The placeholders will be replaced with their actual values in a simple
search-and-replace manner before the HTML is passed to the Android system for graphical rendering.

Accepted placeholder values

The following sections explain the different kinds of placeholders that are accepted in COBI.wms label
templates.

Simple placeholders

The following table describes all simple placeholders understood by the app. Each of these must
appear within the HTML document in the format @placeholderGoesHere@, i.e. with an @-symbol
before and after the name of the placeholder, with no space characters in between.

Document-level
docNumber Document number
docForeignNumber BP-reference of document
docDate Posting date
docDueDate Due date
businessPartnerCode Code of business partner
businessPartnerName Name of business partner
docReference The “Reference 2” field that some documents have
docComments The comments field
Line-level
lineNumber The line number starting from zero
lineItemName Description (normally contains item name)
lineFreeText Free text
lineUnitName UoM name (might have been manually entered)
Item-level
itemCode Item code
itemName Item name
itemForeignName Foreign name of item (often used for an alt. item code)
itemBarcode Primary barcode of the item, as text
itemBarcodeGTIN12 Primary barcode, fitted into GTIN-12 format
itemBarcodeGTIN13 Primary barcode, fitted into GTIN-13 format
itemBarcodeGTIN14 Primary barcode, fitted into GTIN-14 format
itemSupplierCatalogNumber Item number in supplier's catalog
itemAdditionalIdentifier Additional identifier (database field SWW)
itemGroupName Name of the item group in which the item is

Last update: 2022/07/01 15:14 cobi.wms:label_templates https://docs.cobisoft.de/wiki/cobi.wms/label_templates?rev=1656681286

https://docs.cobisoft.de/wiki/ Printed on 2025/08/11 15:57

Document-level
itemPurchasePackQty Quantity of items in one purchase package
itemSalesPackQty Quantity of items in one sales package
itemPurchaseUnitQty Stock quantity per purchased unit
itemSalesUnitQty Stock quantity per sold unit
itemPurchaseUnitName Name of the purchase UoM
itemSalesUnitName Name of the sales UoM
itemStockUnitName Name of the stock UoM
itemPurchaseLength Length of the purchase UoM
itemPurchaseWidth Width of the purchase UoM
itemPurchaseHeight Height of the purchase UoM
itemPurchaseLengthUnit Unit in which the purchase UoM length is given
itemPurchaseWidthUnit Unit in which the purchase UoM width is given
itemPurchaseHeightUnit Unit in which the purchase UoM height is given
itemSalesLength Length of the sales UoM
itemSalesWidth Width of the sales UoM
itemSalesHeight Height of the sales UoM
itemSalesLengthUnit Unit in which the sales UoM length is given
itemSalesWidthUnit Unit in which the sales UoM width is given
itemSalesHeightUnit Unit in which the sales UoM height is given

itemPurchaseUnitContents Contents of the purchase UoM in terms of the base UoM of the UoM
group

itemSalesUnitContents Contents of the sales UoM in terms of the base UoM of the UoM
group

itemStockUnitContents Contents of the stock UoM in terms of the base UoM of the UoM
group

Batch-level
batchNumber Batch number
batchProductionDate Production date of the batch
batchProductionGS1 Production date in GS1 barcode format (YYMMDD)
batchExpiryDate Expiry date of the batch
batchExpiryGS1 Expiry date in GS1 barcode format (YYMMDD)
batchAttr1 Batch attribute 1
batchAttr2 Batch attribute 2
batchDetails Batch details/notes
Serial-level
serialNumber Serial number
serialMnfNumber Manufacturer serial number
serialLotNumber Lot-number of serial number
serialDetails Serial details/notes
Bin location-level
locationCode Bin location code
locationBarcode Bin location barcode
Context-dependent
quantity Quantity of selected line, batch, etc.

2025/08/11 15:57 3/11 Label Templates

COBISOFT Documentation - https://docs.cobisoft.de/wiki/

The placeholders on document- and line-level are only valid when the label printing is triggered on a
document line, such as while creating or after booking a document.

The placeholders of the form itemBarcodeGTIN… will try to force the default barcode of the item
into the specified number of digits by either appending or removing zeroes at the left, such that the
actual value of the GTIN number doesn't change. If this conversion is impossible, for instance if you
try to use itemBarcodeGTIN13 but the barcode uses a full 14 digits with no leading zeroes, then a
pseudo-GTIN of all-zeroes will be used. The utility of these special placeholders becomes apparent in
the next section.

Item prices

You can use placeholders of the form @itemPrice(x)@ to display the price of an item in the price list
number x.

The resulting text will contain the price value with two decimal positions as well as the three-letter
currency code, for example: 5.00 USD

The decimal separator that is used depends on the language settings of the Android device, so for
example a device set to German would format the same as 5,00 USD.

Additionally, the following variants are supported for fine-tuning the format:

Placeholder Description

itemPriceRawValue Price value formatted via Java's Double.toString() method, e.g.
5.5.

itemPriceFormattedValue Price value formatted according to device language, e.g. 5.50 or
5,50.

itemPriceCurrencyCode The three-letter currency code of the price's currency, e.g. USD or
EUR.

itemPriceCurrencySymbol A symbol representing the price's currency, e.g. $ or €.

Examples, where the price is 5 US dollars and 50 cents, and the language is set to US English:

@itemPrice(1)@ → 5.00 USD
@itemPriceFormattedValue(1)@ @itemPriceCurrencyCode(1)@ → 5.00 USD (same as
above)
@itemPriceCurrencySymbol(1)@@itemPriceValue(1)@ → $5.00

The placeholder itemPriceRawValue is especially useful if the price is going to be used in
JavaScript for calculations, where it's important to get its value in a consistent format so it can be
parsed as a number.

Barcode graphics

The following special type of placeholder is supported to print actual barcodes on the label:

@barcode(FORMAT,WIDTH,HEIGHT,CONTENT)@

Last update: 2022/07/01 15:14 cobi.wms:label_templates https://docs.cobisoft.de/wiki/cobi.wms/label_templates?rev=1656681286

https://docs.cobisoft.de/wiki/ Printed on 2025/08/11 15:57

NOTE: Don't put any spaces before or after the surrounding parentheses or the commas separating
the fields!

The following values are supported in place of the FORMAT parameter:

CODEBAR
CODE_39
CODE_93
CODE_128
DATA_MATRIX
EAN_8
EAN_13
QR_CODE
UPC_A
UPC_E

The values given for the WIDTH and HEIGHT parameters are merely guidelines for the barcode
generator. If the generated barcode doesn't fit in the given width/height, they will be exceeded.

For the CONTENT parameter, you can use any other placeholder, free text, or a combination thereof.

Here's a full example:

@barcode(EAN_13,100,50,@itemBarcodeGTIN13@)@

This placeholder will be replaced with an EAN-13 barcode, containing the primary barcode of the item
according to the barcodes table in the item master data in SAP Business One.

Since we've used the placeholder itemBarcodeGTIN13, the barcode of the item may actually be a
GTIN-12, or it may be saved as a GTIN-14 in SAP Business One with a leading zero. In both cases, the
EAN-13 barcode will be generated just fine, since the itemBarcodeGTIN13 adds or removes zeroes
as necessary. If the conversion to the correct number of digits is not possible (e.g. barcode is a full-
length GTIN-14, so there's no leading zero to remove), then the value 0000000000000 (13 zeroes)
will be used instead; this way it's ensured that an EAN-13 barcode is still generated on the label
without messing up the whole print layout. The printed barcode will of course be non-functional.

GS1 Support

The formats CODE_128, DATA_MATRIX, and QR_CODE support generating GS1 Barcodes.

To make use of this, the contents of the barcode must begin with the vertical bar symbol: |

GS1 fields with variable length that need to be terminated are likewise terminated with a vertical bar
symbol.

Example:

@barcode(CODE_128,100,75,|01@itemBarcodeGTIN14@10@batchNumber@|...)@

In this example, the first GS1 barcode field is 01 which symbolizes that a GTIN-14 follows. By using
the placeholder itemBarcodeGTIN14 we ensure that exactly 14 digits are inserted here. This field

https://docs.cobisoft.de/wiki/cobi.wms/gs1_barcodes

2025/08/11 15:57 5/11 Label Templates

COBISOFT Documentation - https://docs.cobisoft.de/wiki/

does not need to be terminated with a pipe symbol, since it has a fixed length of 14 digits.

The next field is 10 i.e. the batch number. This field is allowed to contain 1 to 20 digits or arbitrary
characters. If we use batch numbers of 10 characters, this means we must end this GS1 field explicitly
with a pipe symbol.

Here's a list of commonly used GS1 field identifiers:

https://www.activebarcode.de/codes/ean128_ucc128_ai.html

Here's a full list from GS1.org currently containing 480 entries:

https://www.gs1.org/standards/barcodes/application-identifiers

Better control of generated HTML

The barcode() placeholder generates a whole tag in the generated HTML. If you want
closer control over the HTML, like adding additional attributes to the img tag, you can use the
barcodeB64() placeholder instead, which produces a PNG in Base64. Example:

The parameters of the barcodeB64() placeholder are exactly the same as that of the regular
barcode() placeholder. That means you must still provide the WIDTH and HEIGHT parameters;
these will be passed to the barcode generation system that produces the Base64 PNG.

User-input values

Label templates may contain a special type of placeholder that tells the app to show the user a popup
for values to insert manually every time the label is to be printed. The simplest syntax for this type of
placeholder looks as follows:

@input(NAME)@

The NAME parameter uniquely identifies the input and may only consist of normal English letters and
digits. (No spaces, special characters, umlauts, etc.)

The following logic is applied to label templates with input placeholders:

The template is scanned for all input placeholders.
Whenever such a placeholder is found and the NAME has not been encountered before, it's
registered into a list of needed inputs.
The user is then presented with a popup that contains one field per needed input. The value
provided by the user is saved.
Finally, all input placeholders are replaced with the value that the user had entered for them.
Placeholders with the same NAME get the same value.

Since the name of an input may not contain arbitrary text, an optional “display name” may be
specified in square brackets, which will be used in the popup where the user has to enter the value for

https://www.activebarcode.de/codes/ean128_ucc128_ai.html
https://www.gs1.org/standards/barcodes/application-identifiers

Last update: 2022/07/01 15:14 cobi.wms:label_templates https://docs.cobisoft.de/wiki/cobi.wms/label_templates?rev=1656681286

https://docs.cobisoft.de/wiki/ Printed on 2025/08/11 15:57

that input. Example:

@input(quantity[Number of crates])@

In this example, the input is identified by the simple name qty but the COBI.wms user will see it as
“Number of crates” in the input values popup. If no display name is specified in square brackets, then
the regular name of the input is also used as the display name.

Also, an input may be limited to a predefined set of choices by listing them in the following format:

@input(Currency;EUR,GBP,USD)@

NOTE: Don't put any spaces after the semicolon, or before or after the commas.

This means that in the input popup shown to the user, there will be a drop-down list of selections
instead of a free-form text field.

The display name and the list of choices can be combined:

@input(shipType[Freight type];Less Than Truckload,Full Truckload,Air
Freight,Ocean Freight)@

The configuration for an input (display name and list of values) only has to appear for the first time
the input with that NAME is encountered. A good strategy is to list all the inputs with their
configuration at the top of the HTML file within an HTML comment, and only refer to them as
@input(NAME)@ in the main body of the HTML, to make the template easier to read. Refer to the
second example template for an example of this strategy.

Date placeholders

You can insert the date and/or time of the moment of the printing by using the following special
placeholder:

@date(FORMAT)@

Valid values for the FORMAT parameters correspond to the parameters of the Android class
SimpleDateFormat which is documented in the following page:

https://developer.android.com/reference/java/text/SimpleDateFormat

However, for your convenience, here are the values that are likely to be used most commonly:

yyyy Year, 4 digits
yy Year, 2 digits
MM Month number, 2 digits
dd Day of month, 2 digits
HH Hour of day, 2 digits
mm Minute of hour, 2 digits
ss Second of minute, 2 digits

https://developer.android.com/reference/java/text/SimpleDateFormat

2025/08/11 15:57 7/11 Label Templates

COBISOFT Documentation - https://docs.cobisoft.de/wiki/

Examples follow. Let's say the date is February 23rd, 2021, and the clock reads 16:11.

@date(yyyy-MM-dd HH:mm)@ becomes 2021-02-23 16:11

@date(dd.MM.yyyy)@ becomes 23.02.2021

Date reformatting

The special date-reformat placeholder can be used to interpret a date in one format and then have it
printed in another format. The usage looks as follows:

@dateReformat(DATE|FROM_FORMAT|TO_FORMAT)@

NOTE: Don't put any spaces before or after the parentheses or the separating pipe symbols. (The
spaces would be considered part of the corresponding parameter.)

This placeholder uses the pipe symbol instead of commas to separate its parameters, because the
parameters themselves may contain commas.

The mechanism is as follows: the text found within the DATE parameter is interpreted in accordance
to the format specification FROM_FORMAT so the software knows what date/time it represents, and it's
then turned into TO_FORMAT.

The FROM_FORMAT and TO_FORMAT parameters are akin to the FORMAT parameter of the regular
date() placeholder described in the previous section.

Following is an example for printing the expiry date of a batch number in a custom format, exploiting
the fact that the placeholder @expiryDateGS1@ will always produce a date of the format yyMMdd.

@dateReformat(@batchExpiryGS1@,yyMMdd,dd.MM.yyyy)@

JavaScript bindings

The HTML document resulting from the interpretation of a COBI.wms label template is rendered by a
full-fledged browser engine. This means that you can use not only CSS but even JavaScript in the
template. However, this has to be enabled explicitly by placing the following pseudo-placeholder
anywhere in the file, such as in an HTML comment somewhere at the top:

@useJavaScript@

NOTE: When JS is enabled, the actual printing of the rendered HTML document will not be triggered
automatically anymore. Instead, you have to trigger the printing manually from your JS code by
calling cobiwms.print() at some point.

During execution of your JS code, you have access to the special object cobiwms which contains a
number of functions. Their explanation follows.

cobiwms.get(name)

Last update: 2022/07/01 15:14 cobi.wms:label_templates https://docs.cobisoft.de/wiki/cobi.wms/label_templates?rev=1656681286

https://docs.cobisoft.de/wiki/ Printed on 2025/08/11 15:57

The parameter name must be a string. It will be interpreted as a placeholder, and its value returned
as a string. For example, calling cobiwms.get(“itemName”) will give you the item name as a
string.

(You could also just use placeholders like @itemName@ in your code, but then the value would be
injected as-is into your code. That means: you would have to wrap it in quotation marks like
“@itemName@”, and any quotation marks appearing within the actual value would break the code.
Therefore it's much better to use cobiwms.get() instead.)

cobiwms.prompt(title, callback)

Calling this function makes the app present a popup with an input field to the user. The parameter
title, which must be a string, will be the title of the popup. The parameter callback must also be
a string, and must represent a function. Said function will be called with one argument (a string
representing the value entered by the user) after the user has confirmed their input.

Example usage:

window.handleCurrency = function (currency) {
 ...
}

cobiwms.prompt("Enter currency", "window.handleCurrency")

Example template files

File 1

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8"/>
 <style>
 @page {
 margin: 0;
 padding: 0;
 }
 html {
 margin: 0;
 padding: 0;
 font-family: sans-serif;
 text-align: center;
 }
 body {
 margin: 0;
 padding: 0;
 width: 98mm;

http://december.com/html/4/element/html.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/meta.html
http://december.com/html/4/element/style.html

2025/08/11 15:57 9/11 Label Templates

COBISOFT Documentation - https://docs.cobisoft.de/wiki/

 height: 48mm;
 position: relative;
 }
 </style>
</head>
<body style="border: 0.5mm; border-style: solid; border-color: black;">

<div style="float: left; margin: 1mm;">
 Code: @itemCode@
</div>

<div style="float: right; margin: 1mm;">
 W: @itemSalesWidth@ @itemSalesWidthUnit@
</div>
<div style="float: right; margin: 1mm;">
 L: @itemSalesLength@ @itemSalesLengthUnit@
</div>

<div style="text-align: center; margin-top: 12mm;">
 @itemName@
</div>
<div style="text-align: center; margin-top: 1mm;">
 @barcode(CODE_128,100,50,|90@itemCode@|10@batchNumber@)@
</div>
<div style="text-align: center; font-size: 0.8em;">
 (90)@itemCode@(10)@batchNumber@
</div>

<div style="position: absolute; left: 1mm; bottom: 1mm;">
 @date(yyyy-MM-dd HH:mm)@
</div>

</body>
</html>

File 2

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8"/>
 <style>
 @page {
 margin: 0;
 padding: 0;
 }
 html {
 margin: 0;
 padding: 0;

http://december.com/html/4/element/style.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/html.html
http://december.com/html/4/element/html.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/meta.html
http://december.com/html/4/element/style.html

Last update: 2022/07/01 15:14 cobi.wms:label_templates https://docs.cobisoft.de/wiki/cobi.wms/label_templates?rev=1656681286

https://docs.cobisoft.de/wiki/ Printed on 2025/08/11 15:57

 font-family: sans-serif;
 text-align: center;
 }
 body {
 margin: 0;
 padding: 0;
 width: 98mm;
 height: 48mm;
 position: relative;
 }
 </style>

 <!-- Input definitions:
 @input(simpleInput[Insert value])@
 @input(selectionInput[Select value];Value 1,Value 2,Value 3)@
 -->

 <!-- @useJavaScript@ -->
 <script>
 window.onload = function() {
 var insert = document.getElementById('js-insert')
 insert.textContent = "Hello World!"
 window.cobiwms.print()
 }
 </script>
</head>
<body style="border: 0.5mm; border-style: solid; border-color: black;">

<div style="float: left; margin: 1mm;">
 JS-Insert:
</div>

<div style="float: right; margin: 1mm;">
 Selection: @input(selectionInput)@
</div>

<div style="text-align: center; margin-top: 12mm;">
 @itemName@
</div>
<div style="text-align: center; margin-top: 1mm;">
 @barcode(CODE_128,100,50,|90@itemCode@|10@batchNumber@)@
</div>
<div style="text-align: center; font-size: 0.8em;">
 (90)@itemCode@(10)@batchNumber@
</div>

<div style="position: absolute; left: 1mm; bottom: 1mm;">
 Input: @input(simpleInput)@
</div>

</body>

http://december.com/html/4/element/style.html
http://december.com/html/4/element/script.html
http://december.com/html/4/element/script.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/span.html
http://december.com/html/4/element/span.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/b.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/body.html

2025/08/11 15:57 11/11 Label Templates

COBISOFT Documentation - https://docs.cobisoft.de/wiki/

</html>

From:
https://docs.cobisoft.de/wiki/ - COBISOFT Documentation

Permanent link:
https://docs.cobisoft.de/wiki/cobi.wms/label_templates?rev=1656681286

Last update: 2022/07/01 15:14

http://december.com/html/4/element/html.html
https://docs.cobisoft.de/wiki/
https://docs.cobisoft.de/wiki/cobi.wms/label_templates?rev=1656681286

	Label Templates
	Accepted placeholder values
	Simple placeholders
	Item prices
	Barcode graphics
	GS1 Support
	Better control of generated HTML

	User-input values
	Date placeholders
	Date reformatting

	JavaScript bindings

	Example template files
	File 1
	File 2

